Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Sci Total Environ ; 881: 163322, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: covidwho-2295234

RESUMEN

International high-risk clones of Klebsiella pneumoniae are important human pathogens that are spreading to the environment. In the COVID-19 pandemic scenario, the frequency of carbapenemase-producing strains increased, which can contribute to the contamination of the environment, impacting the surrounding and associated ecosystems. In this regard, KPC-producing strains were recovered from aquatic ecosystems located in commercial, industrial, or agricultural areas and were submitted to whole-genome characterization. K. pneumoniae and Klebsiella quasipneumoniae subsp. quasipneumoniae strains were assigned to high-risk clones (ST11, ST340, ST307) and the new ST6325. Virulome analysis showed genes related to putative hypervirulence. Strains were resistant to almost all antimicrobials tested, being classified as extensively drug-resistant or multidrug-resistant. In this context, a broad resistome (clinically important antimicrobials and hazardous metal) was detected. Single replicon (IncX5, IncN-pST15, IncU) and multireplicon [IncFII(K1)/IncFIB(pQil), IncFIA(HI1)/IncR] plasmids were identified carrying the blaKPC-2 gene with Tn4401 and non-Tn4401 elements. An unusual association of blaKPC-2 and qnrVC1 and the coexistence of blaKPC-2 and mer operon (mercury tolerance) was found. Comparative analysis revealed that blaKPC-2-bearing plasmids were most similar to plasmids from Enterobacterales of Brazil, China, and the United States, evidencing the long persistence of plasmids at the human-animal-environmental interface. Furthermore, the presence of uncommon plasmids, displaying the interspecies, intraspecies, and clonal transmission, was highlighted. These findings alert for the spread of high-risk clones producing blaKPC-2 in the environmental sector and call attention to rapid dispersion in a post-pandemic world.


Asunto(s)
COVID-19 , Infecciones por Klebsiella , Antibacterianos/farmacología , Proteínas Bacterianas/genética , beta-Lactamasas/genética , Células Clonales , Ecosistema , Infecciones por Klebsiella/epidemiología , Klebsiella pneumoniae/genética , Pruebas de Sensibilidad Microbiana , Pandemias , Plásmidos/genética
2.
Nat Aging ; 3(4): 418-435, 2023 04.
Artículo en Inglés | MEDLINE | ID: covidwho-2287166

RESUMEN

Aging is a critical risk factor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine efficacy. The immune responses to inactivated vaccine for older adults, and the underlying mechanisms of potential differences to young adults, are still unclear. Here we show that neutralizing antibody production by older adults took a longer time to reach similar levels in young adults after inactivated SARS-CoV-2 vaccination. We screened SARS-CoV-2 variant strains for epitopes that stimulate specific CD8 T cell response, and older adults exhibited weaker CD8 T-cell-mediated responses to these epitopes. Comparison of lymphocyte transcriptomes from pre-vaccinated and post-vaccinated donors suggested that the older adults had impaired antigen processing and presentation capability. Single-cell sequencing revealed that older adults had less T cell clone expansion specific to SARS-CoV-2, likely due to inadequate immune receptor repertoire size and diversity. Our study provides mechanistic insights for weaker response to inactivated vaccine by older adults and suggests the need for further vaccination optimization for the old population.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto Joven , Humanos , Anciano , Vacunas contra la COVID-19 , COVID-19/prevención & control , Inmunidad Celular , Células Clonales , Epítopos , Vacunas de Productos Inactivados
3.
Cell ; 186(1): 131-146.e13, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: covidwho-2165134

RESUMEN

Germinal centers (GCs) form in secondary lymphoid organs in response to infection and immunization and are the source of affinity-matured B cells. The duration of GC reactions spans a wide range, and long-lasting GCs (LLGCs) are potentially a source of highly mutated B cells. We show that rather than consisting of continuously evolving B cell clones, LLGCs elicited by influenza virus or SARS-CoV-2 infection in mice are sustained by progressive replacement of founder clones by naive-derived invader B cells that do not detectably bind viral antigens. Rare founder clones that resist replacement for long periods are enriched in clones with heavily mutated immunoglobulins, including some with very high affinity for antigen, that can be recalled by boosting. Our findings reveal underappreciated aspects of the biology of LLGCs generated by respiratory virus infection and identify clonal replacement as a potential constraint on the development of highly mutated antibodies within these structures.


Asunto(s)
Linfocitos B , Centro Germinal , Infecciones por Virus ARN , Animales , Ratones , Linfocitos B/citología , Linfocitos B/inmunología , Células Clonales , COVID-19 , Centro Germinal/citología , Centro Germinal/inmunología , SARS-CoV-2 , Gripe Humana , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/patología , Infecciones por Virus ARN/virología
4.
Commun Biol ; 5(1): 1351, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: covidwho-2160334

RESUMEN

T cells play a pivotal role in reducing disease severity during SARS-CoV-2 infection and formation of long-term immune memory. We studied 50 COVID-19 convalescent patients and found that T cell response was induced more frequently and persisted longer than circulating antibodies. We identified 756 clonotypes specific to nine CD8+ T cell epitopes. Some epitopes were recognized by highly similar public clonotypes. Receptors for other epitopes were extremely diverse, suggesting alternative modes of recognition. We tracked persistence of epitope-specific response and individual clonotypes for a median of eight months after infection. The number of recognized epitopes per patient and quantity of epitope-specific clonotypes decreased over time, but the studied epitopes were characterized by uneven decline in the number of specific T cells. Epitopes with more clonally diverse TCR repertoires induced more pronounced and durable responses. In contrast, the abundance of specific clonotypes in peripheral circulation had no influence on their persistence.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Epítopos de Linfocito T , Linfocitos T CD8-positivos , Células Clonales
5.
Nat Commun ; 13(1): 7733, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: covidwho-2160214

RESUMEN

An important consequence of infection with a SARS-CoV-2 variant is protective humoral immunity against other variants. However, the basis for such cross-protection at the molecular level is incompletely understood. Here, we characterized the repertoire and epitope specificity of antibodies elicited by infection with the Beta, Gamma and WA1 ancestral variants and assessed their cross-reactivity to these and the more recent Delta and Omicron variants. We developed a method to obtain immunoglobulin sequences with concurrent rapid production and functional assessment of monoclonal antibodies from hundreds of single B cells sorted by flow cytometry. Infection with any variant elicited similar cross-binding antibody responses exhibiting a conserved hierarchy of epitope immunodominance. Furthermore, convergent V gene usage and similar public B cell clones were elicited regardless of infecting variant. These convergent responses despite antigenic variation may account for the continued efficacy of vaccines based on a single ancestral variant.


Asunto(s)
COVID-19 , Región Variable de Inmunoglobulina , Humanos , Epítopos/genética , SARS-CoV-2/genética , Células Clonales , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus/genética
6.
Front Immunol ; 13: 822834, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2121569

RESUMEN

Somatic hypermutation (SHM) is an important diversification mechanism that plays a part in the creation of immune memory. Immunoglobulin (Ig) variable region gene lineage trees were used over the last four decades to model SHM and the selection mechanisms operating on B cell clones. We hereby present IgTreeZ (Immunoglobulin Tree analyZer), a python-based tool that analyses many aspects of Ig gene lineage trees and their repertoires. Using simulations, we show that IgTreeZ can be reliably used for mutation and selection analyses. We used IgTreeZ on empirical data, found evidence for different mutation patterns in different B cell subpopulations, and gained insights into antigen-driven selection in corona virus disease 19 (COVID-19) patients. Most importantly, we show that including the CDR3 regions in selection analyses - which is only possible if these analyses are lineage tree-based - is crucial for obtaining correct results. Overall, we present a comprehensive lineage tree analysis tool that can reveal new biological insights into B cell repertoire dynamics.


Asunto(s)
COVID-19 , Genes de Inmunoglobulinas , Humanos , Región Variable de Inmunoglobulina/genética , Linfocitos B , Células Clonales
7.
Cell Prolif ; 55(8): e13218, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: covidwho-1985751

RESUMEN

OBJECTIVES: Large-scale generation of universal red blood cells (RBCs) from O-negative (O-ve) human induced pluripotent stem cells (hiPSCs) holds the potential to alleviate worldwide shortages of blood and provide a safe and secure year-round supply. Mature RBCs and reticulocytes, the immature counterparts of RBCs generated during erythropoiesis, could also find important applications in research, for example in malaria parasite infection studies. However, one major challenge is the lack of a high-density culture platform for large-scale generation of RBCs in vitro. MATERIALS AND METHODS: We generated 10 O-ve hiPSC clones and evaluated their potential for mesoderm formation and erythroid differentiation. We then used a perfusion bioreactor system to perform studies with high-density cultures of erythroblasts in vitro. RESULTS: Based on their tri-lineage (and specifically mesoderm) differentiation potential, we isolated six hiPSC clones capable of producing functional erythroblasts. Using the best performing clone, we demonstrated the small-scale generation of high-density cultures of erythroblasts in a perfusion bioreactor system. After process optimization, we were able to achieve a peak cell density of 34.7 million cells/ml with 92.2% viability in the stirred bioreactor. The cells expressed high levels of erythroblast markers, showed oxygen carrying capacity, and were able to undergo enucleation. CONCLUSIONS: This study demonstrated a scalable platform for the production of functional RBCs from hiPSCs. The perfusion culture platform we describe here could pave the way for large volume-controlled bioreactor culture for the industrial generation of high cell density erythroblasts and RBCs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Reactores Biológicos , Diferenciación Celular , Células Clonales , Eritrocitos , Eritropoyesis , Humanos , Perfusión
8.
STAR Protoc ; 3(3): 101617, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: covidwho-1937318

RESUMEN

Induced pluripotent stem cell (iPSC)-derived kidney organoids can be used for disease modeling and drug testing. Here, we describe a protocol to prepare stocks of an infectious clone of SARS-CoV-2 expressing a stable mNeonGreen reporter (icSARS-CoV-2-mNG). We demonstrate the infection of kidney organoids, primarily at the proximal tubular cells, with icSARS-CoV-2-mNG. Using a TCID50 (tissue culture infectious dose 50) assay and confocal microscopy, we show the quantification of SARS-CoV-2-mNG signal in proximal tubular cells of the kidney organoids. For complete details on the use and execution of this protocol, please refer to Rahmani et al. (2022).


Asunto(s)
COVID-19 , SARS-CoV-2 , Células Clonales , ADN Complementario/genética , Humanos , Riñón , Organoides , SARS-CoV-2/genética
9.
Circ Res ; 130(10): 1510-1530, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: covidwho-1794328

RESUMEN

BACKGROUND: Coronary artery disease is an incurable, life-threatening disease that was once considered primarily a disorder of lipid deposition. Coronary artery disease is now also characterized by chronic inflammation' notable for the buildup of atherosclerotic plaques containing immune cells in various states of activation and differentiation. Understanding how these immune cells contribute to disease progression may lead to the development of novel therapeutic strategies. METHODS: We used single-cell technology and in vitro assays to interrogate the immune microenvironment of human coronary atherosclerotic plaque at different stages of maturity. RESULTS: In addition to macrophages, we found a high proportion of αß T cells in the coronary plaques. Most of these T cells lack high expression of CCR7 and L-selectin, indicating that they are primarily antigen-experienced memory cells. Notably, nearly one-third of these cells express the HLA-DRA surface marker, signifying activation through their TCRs (T-cell receptors). Consistent with this, TCR repertoire analysis confirmed the presence of activated αß T cells (CD4

Asunto(s)
Enfermedad de la Arteria Coronaria , Placa Aterosclerótica , Linfocitos T , Antígenos , Células Clonales/inmunología , Enfermedad de la Arteria Coronaria/inmunología , Células Endoteliales , Epítopos , Cadenas alfa de HLA-DR , Humanos , Activación de Linfocitos , Placa Aterosclerótica/inmunología , Linfocitos T/inmunología
10.
J Med Microbiol ; 71(4)2022 Apr.
Artículo en Inglés | MEDLINE | ID: covidwho-1788579

RESUMEN

Introduction. Carbapenem-resistant Acinetobacter baumannii (CRAB) is the primary pathogen causing hospital-acquired infections. The spread of CRAB is mainly driven by the dissemination of resistant clones, and in Latin America, International Clones IC-1 (also known as clonal complex CC1), IC-4 (CC15) and IC-5 (CC79) are the most prevalent.Gap Statement. There are no documented outbreaks of CRAB International Clone 2 (IC-2) reported in Brazil.Aim. To describe a large outbreak of CRAB caused by the uncommon IC-2 in a Brazilian COVID-19 hospital.Methodology. From May 2020 to May 2021, 224 patients infected or colonized with CRAB were identified in a single hospital; 92 % of them were also infected with SARS-CoV-2. From these patients, 137 isolates were recovered and subjected to antimicrobial susceptibility testing, PCR analysis and molecular typing. Whole-genome sequencing and downstream analysis were carried out on a representative isolate (the first available isolate).Results. In 76 % of the patients, a single OXA-23-producing CRAB IC-2 was identified. All the isolates were susceptible to polymyxin B, but highly resistant (>95 %) to aminoglycosides, fluoroquinolones and beta-lactams. Genomic analysis revealed that the representative isolate also carried the 16S rRNA Methylase ArmA, which was detected for the first time in this species in Brazil.Conclusion. We report the rapid spread of an emerging CRAB clone responsible for causing a large outbreak in a hospital in Brazil, a country with predominance of other CRAB clones. Continuous and prospective surveillance is warranted to evaluate the impact of this clone in Brazilian hospital settings.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , COVID-19 , Infecciones por Acinetobacter/epidemiología , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Brasil/epidemiología , COVID-19/epidemiología , Células Clonales , Humanos , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Pandemias , Estudios Prospectivos , ARN Ribosómico 16S , SARS-CoV-2/genética , beta-Lactamasas/genética
11.
MAbs ; 14(1): 2005507, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1585297

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered a serious public health crisis worldwide, and considering the novelty of the disease, preventative and therapeutic measures alike are urgently needed. To accelerate such efforts, the development of JS016, a neutralizing monoclonal antibody directed against the SARS-CoV-2 spike protein, was expedited from a typical 12- to 18-month period to a 4-month period. During this process, transient Chinese hamster ovary cell lines are used to support preclinical, investigational new drug-enabling toxicology research, and early Chemistry, Manufacturing and Controls development; mini-pool materials to supply Phase 1 clinical trials; and a single-clone working cell bank for late-stage and pivotal clinical trials were successively adopted. Moreover, key process performance and product quality investigations using a series of orthogonal and state-of-the-art techniques were conducted to demonstrate the comparability of products manufactured using these three processes, and the results indicated that, despite observed variations in process performance, the primary and high-order structures, purity and impurity profiles, biological and immunological functions, and degradation behaviors under stress conditions were largely comparable. The study suggests that, in particular situations, this strategy can be adopted to accelerate the development of therapeutic biopharmaceuticals and their access to patients.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/uso terapéutico , Afinidad de Anticuerpos/inmunología , Especificidad de Anticuerpos/inmunología , Células CHO , COVID-19/prevención & control , COVID-19/virología , Cromatografía Líquida de Alta Presión/métodos , Dicroismo Circular , Células Clonales , Cricetinae , Cricetulus , Humanos , Inmunoglobulina G/química , Inmunoglobulina G/inmunología , Inmunoglobulina G/uso terapéutico , Punto Isoeléctrico , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo
12.
Cell ; 185(4): 603-613.e15, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: covidwho-1588149

RESUMEN

SARS-CoV-2 mRNA vaccines induce robust anti-spike (S) antibody and CD4+ T cell responses. It is not yet clear whether vaccine-induced follicular helper CD4+ T (TFH) cell responses contribute to this outstanding immunogenicity. Using fine-needle aspiration of draining axillary lymph nodes from individuals who received the BNT162b2 mRNA vaccine, we evaluated the T cell receptor sequences and phenotype of lymph node TFH. Mining of the responding TFH T cell receptor repertoire revealed a strikingly immunodominant HLA-DPB1∗04-restricted response to S167-180 in individuals with this allele, which is among the most common HLA alleles in humans. Paired blood and lymph node specimens show that while circulating S-specific TFH cells peak one week after the second immunization, S-specific TFH persist at nearly constant frequencies for at least six months. Collectively, our results underscore the key role that robust TFH cell responses play in establishing long-term immunity by this efficacious human vaccine.


Asunto(s)
COVID-19/inmunología , COVID-19/virología , Inmunidad/inmunología , SARS-CoV-2/inmunología , Células T Auxiliares Foliculares/inmunología , Vacunación , Vacunas Sintéticas/inmunología , Vacunas de ARNm/inmunología , Adulto , Linfocitos B/inmunología , Vacuna BNT162/inmunología , COVID-19/sangre , Células Clonales , Estudios de Cohortes , Citocinas/metabolismo , Femenino , Centro Germinal/inmunología , Cadenas beta de HLA-DP/inmunología , Humanos , Epítopos Inmunodominantes/inmunología , Células Jurkat , Ganglios Linfáticos/metabolismo , Masculino , Persona de Mediana Edad , Péptidos/química , Péptidos/metabolismo , Multimerización de Proteína , Receptores de Antígenos de Linfocitos T/metabolismo
13.
N Engl J Med ; 385(24): 2264-2270, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1560911

RESUMEN

Inherited junctional epidermolysis bullosa is a severe genetic skin disease that leads to epidermal loss caused by structural and mechanical fragility of the integuments. There is no established cure for junctional epidermolysis bullosa. We previously reported that genetically corrected autologous epidermal cultures regenerated almost an entire, fully functional epidermis on a child who had a devastating form of junctional epidermolysis bullosa. We now report long-term clinical outcomes in this patient. (Funded by POR FESR 2014-2020 - Regione Emilia-Romagna and others.).


Asunto(s)
Epidermis/trasplante , Epidermólisis Ampollosa de la Unión/terapia , Queratinocitos/trasplante , Transducción Genética , Transgenes , Autorrenovación de las Células , Células Cultivadas/trasplante , Niño , Células Clonales , Epidermis/patología , Epidermólisis Ampollosa de la Unión/genética , Epidermólisis Ampollosa de la Unión/patología , Estudios de Seguimiento , Enfermedades Genéticas Congénitas/patología , Enfermedades Genéticas Congénitas/terapia , Terapia Genética , Vectores Genéticos , Humanos , Queratinocitos/citología , Queratinocitos/fisiología , Masculino , Regeneración , Células Madre/fisiología , Trasplante Autólogo
14.
Nature ; 602(7895): 148-155, 2022 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1556858

RESUMEN

Immunological memory is a hallmark of adaptive immunity and facilitates an accelerated and enhanced immune response upon re-infection with the same pathogen1,2. Since the outbreak of the ongoing COVID-19 pandemic, a key question has focused on which SARS-CoV-2-specific T cells stimulated during acute infection give rise to long-lived memory T cells3. Here, using spectral flow cytometry combined with cellular indexing of transcriptomes and T cell receptor sequencing, we longitudinally characterized individual SARS-CoV-2-specific CD8+ T cells of patients with COVID-19 from acute infection to 1 year into recovery and found a distinct signature identifying long-lived memory CD8+ T cells. SARS-CoV-2-specific memory CD8+ T cells persisting 1 year after acute infection express CD45RA, IL-7 receptor-α and T cell factor 1, but they maintain low expression of CCR7, thus resembling CD45RA+ effector memory T cells. Tracking individual clones of SARS-CoV-2-specific CD8+ T cells, we reveal that an interferon signature marks clones that give rise to long-lived cells, whereas prolonged proliferation and mechanistic target of rapamycin signalling are associated with clonal disappearance from the blood. Collectively, we describe a transcriptional signature that marks long-lived, circulating human memory CD8+ T cells following an acute viral infection.


Asunto(s)
Antígenos Virales/inmunología , Biomarcadores/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , COVID-19/inmunología , Células T de Memoria/inmunología , Células T de Memoria/metabolismo , SARS-CoV-2/inmunología , Enfermedad Aguda , COVID-19/virología , Proliferación Celular , Células Clonales/citología , Células Clonales/inmunología , Humanos , Interferones/inmunología , Subunidad alfa del Receptor de Interleucina-7/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Estudios Longitudinales , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores CCR7/metabolismo , Factor 1 de Transcripción de Linfocitos T/metabolismo , Factores de Tiempo , Transcriptoma
15.
BMC Genomics ; 22(Suppl 5): 518, 2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: covidwho-1523282

RESUMEN

BACKGROUND: All diseases containing genetic material undergo genetic evolution and give rise to heterogeneity including cancer and infection. Although these illnesses are biologically very different, the ability for phylogenetic retrodiction based on the genomic reads is common between them and thus tree-based principles and assumptions are shared. Just as the different frequencies of tumor genomic variants presupposes the existence of multiple tumor clones and provides a handle to computationally infer them, we postulate that the different variant frequencies in viral reads offers the means to infer multiple co-infecting sublineages. RESULTS: We present a common methodological framework to infer the phylogenomics from genomic data, be it reads of SARS-CoV-2 of multiple COVID-19 patients or bulk DNAseq of the tumor of a cancer patient. We describe the Concerti computational framework for inferring phylogenies in each of the two scenarios.To demonstrate the accuracy of the method, we reproduce some known results in both scenarios. We also make some additional discoveries. CONCLUSIONS: Concerti successfully extracts and integrates information from multi-point samples, enabling the discovery of clinically plausible phylogenetic trees that capture the heterogeneity known to exist both spatially and temporally. These models can have direct therapeutic implications by highlighting "birth" of clones that may harbor resistance mechanisms to treatment, "death" of subclones with drug targets, and acquisition of functionally pertinent mutations in clones that may have seemed clinically irrelevant. Specifically in this paper we uncover new potential parallel mutations in the evolution of the SARS-CoV-2 virus. In the context of cancer, we identify new clones harboring resistant mutations to therapy.


Asunto(s)
COVID-19 , Neoplasias , Células Clonales , Humanos , Mutación , Neoplasias/genética , Filogenia , SARS-CoV-2
16.
Immunity ; 54(9): 2159-2166.e6, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: covidwho-1454205

RESUMEN

The emergence of SARS-CoV-2 antigenic variants with increased transmissibility is a public health threat. Some variants show substantial resistance to neutralization by SARS-CoV-2 infection- or vaccination-induced antibodies. Here, we analyzed receptor binding domain-binding monoclonal antibodies derived from SARS-CoV-2 mRNA vaccine-elicited germinal center B cells for neutralizing activity against the WA1/2020 D614G SARS-CoV-2 strain and variants of concern. Of five monoclonal antibodies that potently neutralized the WA1/2020 D614G strain, all retained neutralizing capacity against the B.1.617.2 variant, four also neutralized the B.1.1.7 variant, and only one, 2C08, also neutralized the B.1.351 and B.1.1.28 variants. 2C08 reduced lung viral load and morbidity in hamsters challenged with the WA1/2020 D614G, B.1.351, or B.1.617.2 strains. Clonal analysis identified 2C08-like public clonotypes among B cells responding to SARS-CoV-2 infection or vaccination in 41 out of 181 individuals. Thus, 2C08-like antibodies can be induced by SARS-CoV-2 vaccines and mitigate resistance by circulating variants of concern.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Linfocitos B/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Centro Germinal/inmunología , Pulmón/virología , SARS-CoV-2/fisiología , Animales , Células Cultivadas , Células Clonales , Cricetinae , Modelos Animales de Enfermedad , Humanos , Pruebas de Neutralización , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Carga Viral
17.
Nature ; 596(7870): 109-113, 2021 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1284697

RESUMEN

SARS-CoV-2 mRNA-based vaccines are about 95% effective in preventing COVID-191-5. The dynamics of antibody-secreting plasmablasts and germinal centre B cells induced by these vaccines in humans remain unclear. Here we examined antigen-specific B cell responses in peripheral blood (n = 41) and draining lymph nodes in 14 individuals who had received 2 doses of BNT162b2, an mRNA-based vaccine that encodes the full-length SARS-CoV-2 spike (S) gene1. Circulating IgG- and IgA-secreting plasmablasts that target the S protein peaked one week after the second immunization and then declined, becoming undetectable three weeks later. These plasmablast responses preceded maximal levels of serum anti-S binding and neutralizing antibodies to an early circulating SARS-CoV-2 strain as well as emerging variants, especially in individuals who had previously been infected with SARS-CoV-2 (who produced the most robust serological responses). By examining fine needle aspirates of draining axillary lymph nodes, we identified germinal centre B cells that bound S protein in all participants who were sampled after primary immunization. High frequencies of S-binding germinal centre B cells and plasmablasts were sustained in these draining lymph nodes for at least 12 weeks after the booster immunization. S-binding monoclonal antibodies derived from germinal centre B cells predominantly targeted the receptor-binding domain of the S protein, and fewer clones bound to the N-terminal domain or to epitopes shared with the S proteins of the human betacoronaviruses OC43 and HKU1. These latter cross-reactive B cell clones had higher levels of somatic hypermutation as compared to those that recognized only the SARS-CoV-2 S protein, which suggests a memory B cell origin. Our studies demonstrate that SARS-CoV-2 mRNA-based vaccination of humans induces a persistent germinal centre B cell response, which enables the generation of robust humoral immunity.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Centro Germinal/inmunología , Células Plasmáticas/inmunología , Vacunas Sintéticas/inmunología , Adulto , Anciano , Animales , Anticuerpos Antivirales/inmunología , Vacuna BNT162 , COVID-19/prevención & control , Chlorocebus aethiops , Células Clonales/citología , Células Clonales/inmunología , Centro Germinal/citología , Voluntarios Sanos , Humanos , Persona de Mediana Edad , Células Plasmáticas/citología , SARS-CoV-2/inmunología , Factores de Tiempo , Células Vero
18.
Sci Rep ; 11(1): 13164, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1281736

RESUMEN

The COVID-19 pandemic has revealed a range of disease phenotypes in infected patients with asymptomatic, mild, or severe clinical outcomes, but the mechanisms that determine such variable outcomes remain unresolved. In this study, we identified immunodominant CD8 T-cell epitopes in the spike antigen using a novel TCR-binding algorithm. The predicted epitopes induced robust T-cell activation in unexposed donors demonstrating pre-existing CD4 and CD8 T-cell immunity to SARS-CoV-2 antigen. The T-cell reactivity to the predicted epitopes was higher than the Spike-S1 and S2 peptide pools in the unexposed donors. A key finding of our study is that pre-existing T-cell immunity to SARS-CoV-2 is contributed by TCRs that recognize common viral antigens such as Influenza and CMV, even though the viral epitopes lack sequence identity to the SARS-CoV-2 epitopes. This finding is in contrast to multiple published studies in which pre-existing T-cell immunity is suggested to arise from shared epitopes between SARS-CoV-2 and other common cold-causing coronaviruses. However, our findings suggest that SARS-CoV-2 reactive T-cells are likely to be present in many individuals because of prior exposure to flu and CMV viruses.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , Epítopos de Linfocito T/inmunología , Epítopos Inmunodominantes , Glicoproteína de la Espiga del Coronavirus/inmunología , Algoritmos , Células Clonales , Expresión Génica , Humanos , Activación de Linfocitos , Receptores de Antígenos de Linfocitos T/inmunología , SARS-CoV-2
19.
Clin Exp Immunol ; 205(3): 363-378, 2021 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1249405

RESUMEN

Since December 2019, Coronavirus disease-19 (COVID-19) has spread rapidly throughout the world, leading to a global effort to develop vaccines and treatments. Despite extensive progress, there remains a need for treatments to bolster the immune responses in infected immunocompromised individuals, such as cancer patients who recently underwent a haematopoietic stem cell transplantation. Immunological protection against COVID-19 is mediated by both short-lived neutralizing antibodies and long-lasting virus-reactive T cells. Therefore, we propose that T cell therapy may augment efficacy of current treatments. For the greatest efficacy with minimal adverse effects, it is important that any cellular therapy is designed to be as specific and directed as possible. Here, we identify T cells from COVID-19 patients with a potentially protective response to two major antigens of the SARS-CoV-2 virus, Spike and Nucleocapsid protein. By generating clones of highly virus-reactive CD4+ T cells, we were able to confirm a set of nine immunodominant epitopes and characterize T cell responses against these. Accordingly, the sensitivity of T cell clones for their specific epitope, as well as the extent and focus of their cytokine response was examined. Moreover, using an advanced T cell receptor (TCR) sequencing approach, we determined the paired TCR-αß sequences of clones of interest. While these data on a limited population require further expansion for universal application, the results presented here form a crucial first step towards TCR-transgenic CD4+ T cell therapy of COVID-19.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , COVID-19/inmunología , COVID-19/terapia , Proteínas de la Nucleocápside de Coronavirus/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Aminoácidos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , COVID-19/virología , Células Clonales/inmunología , Células Clonales/virología , Proteínas de la Nucleocápside de Coronavirus/química , Proteínas de la Nucleocápside de Coronavirus/genética , Citocinas/biosíntesis , Epítopos de Linfocito T/química , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Femenino , Humanos , Inmunización Pasiva , Epítopos Inmunodominantes/química , Epítopos Inmunodominantes/genética , Epítopos Inmunodominantes/inmunología , Masculino , Persona de Mediana Edad , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Sueroterapia para COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA